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6.1 Sampling



 Start with a continuous-time (analog) signal.

Sampling
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Ts 2Ts 3Ts 4Ts-Ts-2Ts-3Ts-4Ts
t

m(t)



 Record the value every Ts seconds.

Sampling
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 Get a sequence of samples (numbers).

Sampling
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Ts 2Ts 3Ts 4Ts-Ts-2Ts-3Ts-4Ts
t

m[0]
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m[3]
m[4]

m[-1]
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Example: sin(100t) (1/4)
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This is the plot of sin(100t). What’s wrong with it?
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[AliasingSin_2.m]



Example: sin(100t) (2/4)
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Signal of the form   0sin 2 f t  have frequency  0f f  Hz. 

So, the frequency of   sin 100 t  is 50 Hz. 
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From time 0 to 1, it should 
have completed 50 cycles. 
However, our plot has only 
one cycle.

It looks more like the plot 
of  sin 2 t



Example: sin(100t) (3/4)
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Aliasing causes 
high-frequency 
signal to be seen 
as low frequency.
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Signal of the form   0sin 2 f t  have frequency  0f f  Hz. 

So, the frequency of   sin 100 t  is 50 Hz. 
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We need to sample at least 
100 times per time unit.

Here, the number of 
sample per time unit is 49, 
which is too small to avoid 
aliasing.

Example: sin(100t) (4/4)



Using plotspect.m to study aliasing

10

 fs: Sampling frequency = 200 samples/sec
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Using plotspect.m to study aliasing
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 fs: Sampling frequency = 200 samples/sec
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Using plotspect.m to study aliasing
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 fs: Sampling frequency = 200 samples/sec

cos ߨ2 50 ݐ
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plotspect sees 50 Hz 
signal (correct) 

plotspect sees 70 Hz 
signal (correct) 

plotspect sees 100? 
Hz signal (correct?) 



Using plotspect.m to study aliasing
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 fs: Sampling frequency = 200 samples/sec
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plotspect sees 90 Hz 
signal (wrong!) 
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signal (wrong!) 

plotspect sees 10 Hz 
signal (wrong!) 



Using plotspect.m to study aliasing
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 fs: Sampling frequency = 200 samples/sec
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plotspect sees 90 Hz 
signal (wrong!) 

plotspect sees 70 Hz 
signal (wrong!) 

plotspect sees 10 Hz 
signal (wrong!) 

This behavior is 
commonly referred 
to as folding.



MATLAB Demo
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fs: Sampling frequency = 200 samples/sec

cos ߨ2 ૙ࢌ ݐ

The frequency ࢌ૙
of the cosine is 
increased (in steps 
of 10) from 10 Hz 
to 300 Hz.

[aliasingCos.m]



MATLAB Demo

16 [aliasingCos.m]



Pac Man’s Tunneling
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Actually, I think we 
should call 
it tunneling
(like in Pac Man).



MATLAB Demo
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fs: Sampling frequency = 200 samples/sec

௝ଶగ ૙ࢌ ௧

The frequency ࢌ૙
of the complex 
expo. signal is 
increased (in steps 
of 10) from 10 Hz 
to 300 Hz.

[aliasingExp.m]



MATLAB Demo

19 [aliasingExp.m]



MATLAB Demo
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fs: Sampling frequency = 200 samples/sec

௝ଶగ ૙ࢌ ௧

The frequency ࢌ૙
of the complex 
expo. signal is 
decreased (in steps 
of 10) from -10 Hz 
to -300 Hz.

[aliasingExpNegative.m]



MATLAB Demo

21 [aliasingExpNegative.m]



Conclusion
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 The folding technique is useful for finding the perceived 
frequency of ૙
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Demo: [aliasingCos_folding]

When fs = 200  [Sa/s], the 
cosine @ freq. 150 Hz will 
be perceived as a cosine @ 
freq. 50 Hz.



MATLAB Demo

23 [aliasingCos_folding]



Conclusion
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 The folding technique is useful for finding the perceived 
frequency of ૙ Demo: [aliasingCos_folding]

When fs = 200  [Sa/s], the 
cosine @ freq. 260 Hz will 
be perceived as a cosine @ 
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Conclusions
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 The folding technique is useful for finding the perceived 
frequency of ૙
 OK to look at the frequency only from 0 to fs/2.

 When the signal does not have the “symmetry” between the 
positive and negative frequency parts,

 for example, the complex exponential ௝ଶగ ૙ࢌ ௧

 must look at the frequency from -fs/2 to fs/2.

 Actually, it is doing “tunneling”.



Conclusions
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 When the signal does not have the “symmetry” between the 
positive and negative frequency parts,

 for example, the complex exponential ௝ଶగ ૙ࢌ ௧

 must look at the frequency from -fs/2 to fs/2.
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When fs = 200  [Sa/s], the 
cosine @ freq. 150 Hz will 
be perceived as a cosine @ 
freq. -50 Hz.
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Ideal Sampling
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B-B

The Fourier 
transform of 
the original 
signal

The Fourier 
transform of 
the (ideal) 
sampled signal
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Ideal Sampling
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B-B

The Fourier 
transform of 
the original 
signal

The Fourier 
transform of 
the (ideal) 
sampled signal
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Ideal Sampling: MATLAB Exploration
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The Fourier 
transform of 
the original 
signal

The Fourier 
transform of 
the (ideal) 
sampled signal
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Ideal Sampling: MATLAB Exploration
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B-B

The Fourier 
transform of 
the original 
signal

The Fourier 
transform of 
the (ideal) 
sampled signal

Note that the 
frequency 
unit here is fs. 
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Ideal Sampling: MATLAB Exploration
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B-B

The Fourier 
transform of 
the original 
signal

The Fourier 
transform of 
the (ideal) 
sampled signal

So, it’s 
actually 2fs
here.
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Ideal Sampling: MATLAB Exploration
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B-B

The height here is actually A.

The height here is actually Afs.

The Fourier 
transform of 
the original 
signal

The Fourier 
transform of 
the (ideal) 
sampled signal



Ideal Sampling: MATLAB Exploration
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Here, B = 0.4fs. In the 
“animation”, we will increase 
the value of B from 0.2fs to 3fs.



Ideal Sampling: MATLAB Exploration

34 [Gdelta_demo1.m]
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Ideal Sampling: MATLAB Exploration

35

B-B
When B > fs/2, 
overlapping 
happens in the 
frequency 
domain.

This spectral 
overlapping of 
the signal is 
commonly 
referred to as 
“aliasing”.
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Ideal Sampling: MATLAB Exploration
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B-B

1
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To find 
ࢾࡳ ࢌ , don’t 
forget to add 
the replicas

The Fourier 
transform of 
the original 
signal

The Fourier 
transform of 
the (ideal) 
sampled signal

Very different from G(f).



Ideal Sampling: MATLAB Exploration

37 [Gdelta_demo2.m]
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Ideal Sampling: MATLAB Exploration
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B-B

The Fourier 
transform of 
the original 
signal

The Fourier 
transform of 
the (ideal) 
sampled signal

When B < fs/2, 
the replicas do 
not overlap and 
hence we do not 
need to spend 
extra effort to 
find their sum.



Ideal Sampling: MATLAB Exploration
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When B < fs/2, 
the replicas do 
not overlap and 
hence we do not 
need to spend 
extra effort to 
find their sum.
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Ideal Sampling: MATLAB Exploration

40

When B < fs/2, 
the replicas do 
not overlap and 
hence we do not 
need to spend 
extra effort to 
find their sum.
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G(f) is still in here.



Ideal Sampling: MATLAB Exploration
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Note that ܩఋ ݂ is “periodic” in the frequency domain with 

period  fs. Therefore, it is sufficient to look only at f between േ௙ೞ
ଶ

.
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Ideal Sampling: MATLAB Exploration
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B-B
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The periodicity 
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of whether the 
replicas overlap in 
the frequency 
domain.

Note that ܩఋ ݂ is “periodic” in the frequency domain with 

period  fs. Therefore, it is sufficient to look only at f between േ௙ೞ
ଶ
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Ideal Sampling: plotspect’s view
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 The function plotspect relies on the sampled version of 
the signal. 

 Any corruption of information (aliasing) from the sampling 
process will also be “visible” in the output of plotspect.

 plotspect also looks only at f between 
௙ೞ
ଶ

.

 With some vertical scaling. 



Ideal Sampling: plotspect’s view
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result will be 
quite different 
from the 
expected 
theoretical/anal
ytical Fourier 
transform G(f).



Ideal Sampling: plotspect’s view
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For plotspect
to give an 
accurate view, 
we need B < 
fs/2.



Ideal Sampling: Folding 
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 When the signal g(t) is real-valued, recall that its Fourier 
transform has conjugate symmetry.

 It is sufficient to look at the positive frequency if we care 
only about the magnitude.

 Therefore, we can limit our view to [0,fs/2].
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Ideal Sampling: from -fs/2 to fs/2
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The Fourier 
transform of 
the original 
signal

The Fourier 
transform of 
the (ideal) 
sampled signal

Note the symmetry.



Ideal Sampling: Folding 
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Ideal Sampling: Folding 

49 [Gdelta_demo3.m]



Ideal Sampling: Folding 

50 [Gdelta_demo4.m]



Ideal Sampling: Folding 
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The animation 
did make it look 
like G(f) is being 
folded repeatedly 
at 0 and fs/2. This 
is correct as long 
as 1) you are 
assuming real-
valued g(t) and 2) 
you only want to 
look at the 
magnitude of 
G(f).



Ideal Sampling: Folding
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When G(f) resides 
only in the 
positive 
frequency, we 
start seeing the 
flaw of the 
“folding 
technique”.



Ideal Sampling: Tunneling

53 [Gdelta_demo6.m]



Ideal Sampling: Folding
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1. See no folding 
here.

2. See nothing for a while.
3. Suddenly, 
something 
shows up on 
this side.



Ideal Sampling: Folding
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To see the 
complete 
picture, we 
should look at 
G(f) between 

േ ࢙ࢌ
૛

.

The missing 
pieces



Ideal Sampling: Tunneling

56 [Gdelta_demo5.m]



Ideal Sampling: Tunneling

57

-3 -2 -1 0 1 2 3
0

0.5

1

f [fs]

[A
]

G(f)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

f [fs]

[A
 f s]

G

(f)



Ideal Sampling: Tunneling

58 [Gdelta_demo7.m]



Ideal Sampling: Tunneling
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Ideal Sampling: Tunneling

60 [Gdelta_demo8.m]



Ideal Sampling: Folding (a revisit)
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The part of G(f) 
that resides in the 
negative 
frequency is 
colored 
differently here. 
This allows us to 
see what really is 
going on.



Ideal Sampling: Folding (a revisit)

62 [Gdelta_demo9.m]



Ideal Sampling: Folding (a revisit)
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Ideal Sampling: Folding (a revisit)

64 [Gdelta_demo10.m]



Ideal Sampling
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Complex exponential
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f
fS 2fS-fS-2fS

௝ଶగ௙బ௧

f0

Let’s increase f0



Complex exponential
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Perceived freq.
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6.2 Reconstruction



Reconstruction of 
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Upper plot in 
Figure 34.



Reconstruction of 
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Upper plot in 
Figure 34.

Reconstructed signal

fs = 1/0.4            
= 2.5 [Sa/s] 

B = 2 Hz.

fs < 2B the reconstructed signal is different from the original signal.



Reconstruction of 

71

f

f
-4          -3          -2         -1                       1           2           3           4          5

-4          -3          -2         -1                       1           2           3           4          5

0.5 0.5


1.25



Reconstruction of 
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B = 2 Hz.
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Reconstruction of 
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B = 2 Hz.

Reconstructed signal

fs > 2B the reconstructed signal is “the same” as the original signal.
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Reconstruction of 
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B = 2 Hz.

Reconstructed signal

fs > 2B the reconstructed signal is “the same” as the original signal.

௦݂ ൌ
ଵ
଴.ଶ

ൌ 5 [Sa/s]

௦ܶ ൌ 0.2

Some reconstruction 
error is visible at the 
boundaries because 
we did not use g[n] 
for n beyond 2 in 
the reconstruction 
here.



Triangular (linear) interpolation

75

Ts 2Ts 3Ts 4Ts-Ts-2Ts-3Ts-4Ts

t

t
Ts-Ts

1
݄௅௉ ݐ



Triangular (linear) interpolation
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High freq. content 
of G(f) is attenuated

(Small part of) the replicas at even higher 
freq. (which do not exist before) also survive.
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6.3 Analog Pulse Modulation



PAM: Pulse Amplitude Modulation
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t

m[0]
m[1]

m[2]

m[3]
m[4]

m[-1]
m[-2]

m[-3]

m[-4]

Start with a sequence of symbols (numbers).

Ts 2Ts 3Ts 4Ts-Ts-2Ts-3Ts-4Ts

Where does this sequence come from?
• Sampling of a continuous-time signal
• Naturally discrete-time signal



Naturally digital information
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 Text is commonly encoded using ASCII, and MATLAB 
automatically represents any string file as a list of ASCII 
numbers. 

text string

(decimal) ASCII representation of the text string

binary (base 2) representation of the decimal numbers



PAM: Pulse Amplitude Modulation
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PAM: Pulse Amplitude Modulation
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The height (amplitude) of 
each pulse is scaled by the 
corresponding m[n]
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PAM: Pulse Amplitude Modulation
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PAM: Pulse Amplitude Modulation
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PAM: Pulse Amplitude Modulation
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The height (amplitude) of 
each pulse is scaled by the 
corresponding m[n]
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PAM: Pulse Amplitude Modulation
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The height (amplitude) of 
each pulse is scaled by the 
corresponding m[n]
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XPAM(f) (1/4)
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 PAMx t

Can you sketch the spectrum of s(t)?

   1 0, sp t t T   
 P f

     PAM s
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XPAM(f) (2/4)
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This is also the spectrum of 

 for any .sp t nT n

   
 

PAMDoes this mean  will simply be a sum of 

and therefore its shape will be similar to ?

X f P f

P f
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Important Properties of 
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*x y X Y
*x y X Y 

Convolution Properties:

Modulation:

 * ( ) ( ) ( ) ( ) ( )x y t x y t d x t y d     
 

 

    

Shifting Properties:
   0

0
2 tj fg t e Gt f 

   0
0

2j tfe g t G f f 

       1 1cos 2
2 2c c cf f fg t t G f G f   

Note that the 
magnitude of this is 
simply ܩ ݂



XPAM(f) (3/4)
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XPAM(f) (4/4)
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A revisit to an earlier OOK Example
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Spectrum of ON-OFF Keying
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