Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

6. Sampling, Reconstruction, and Pulse Modulation

Office Hours:

BKD, 4th floor of Sirindhralai building

Monday Monday Thursday

9:30-10:30 14:00-16:00 16:00-17:00

Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 6.1 Sampling

Sampling

• Start with a continuous-time (analog) signal.

Sampling

• Record the value every T_s seconds.

Sampling

• Get a sequence of samples (numbers).

Example: $sin(100\pi t)$

This is the plot of $sin(100\pi t)$. What's wrong with it?

Example: $sin(100\pi t)$ (2/4)Signal of the form $sin(2\pi f_0 t)$ have frequency $f = f_0$ Hz.So, the frequency of $sin(100\pi t)$ is 50 Hz.

From time 0 to 1, it should have completed 50 cycles. However, our plot has only one cycle.

It looks more like the plot of $sin(2\pi t)$

Example: $sin(100\pi t)$ (4/4) Signal of the form $sin(2\pi f_0 t)$ have frequency $f = f_0$ Hz. So, the frequency of $sin(100\pi t)$ is 50 Hz.

We need to sample at least 100 times per time unit.

Here, the number of sample per time unit is 49, which is too small to avoid aliasing.

 f_s : Sampling frequency = 200 samples/sec

[aliasingCos.m]

Pac Man's Tunneling

Actually, I think we should call it **tunneling** (like in Pac Man).

 f_s : Sampling frequency = 200 samples/sec

[aliasingExp.m]

 f_s : Sampling frequency = 200 samples/sec

[aliasingExpNegative.m]

Conclusion

• The folding technique is useful for finding the perceived frequency of $\cos(2\pi(f_0)t)$. Demo: [aliasingCos_folding]

[aliasingCos_folding]

Conclusion

• The folding technique is useful for finding the perceived frequency of $\cos(2\pi(f_0)t)$. Demo: [aliasingCos_folding]

Conclusions

- The folding technique is useful for finding the perceived frequency of $\cos(2\pi(f_0)t)$.
 - OK to look at the frequency only from 0 to $f_s/2$.
- When the signal does not have the "symmetry" between the positive and negative frequency parts,
 - for example, the complex exponential $e^{j2\pi(f_0)t}$
 - must look at the frequency from $-f_s/2$ to $f_s/2$.
- Actually, it is doing "tunneling".

Conclusions

- When the signal does not have the "symmetry" between the positive and negative frequency parts,
 - for example, the complex exponential $e^{j2\pi(f_0)t}$

• must look at the frequency from $-f_s/2$ to $f_s/2$.

[Gdelta_demo1.m]

[Gdelta_demo2.m]

Ideal Sampling: plotspect's view

- The function **plotspect** relies on the sampled version of the signal.
- Any corruption of information (aliasing) from the sampling process will also be "visible" in the output of plotspect.
- **plotspect** also looks only at f between $\pm \frac{f_s}{2}$.
 - With some vertical scaling.

Ideal Sampling: plotspect's view

Ideal Sampling: plotspect's view

- When the signal *g*(*t*) is **real-valued**, recall that its Fourier transform has conjugate symmetry.
- It is sufficient to look at the positive frequency if we **care only about the magnitude**.
- Therefore, we can limit our view to $[0, f_s/2]$.

Ideal Sampling: from $-f_s/2$ to $f_s/2$

[Gdelta_demo3.m]

[Gdelta_demo4.m]

The animation did make it look like *G*(*f*) is being folded repeatedly at 0 and $f_s/2$. This **3** is correct as long as 1) you are assuming realvalued g(t) and 2) you only want to look at the magnitude of *G(f)*.

[Gdelta_demo6.m]

[Gdelta_demo5.m]

[Gdelta_demo7.m]

[Gdelta_demo8.m]

[Gdelta_demo9.m]

63

[Gdelta_demo10.m]

Ideal Sampling

65

Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 6.2 Reconstruction

Triangular (linear) interpolation

Triangular (linear) interpolation

78

 \bigcirc

Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 6.3 Analog Pulse Modulation

Start with a sequence of symbols (numbers).

Where does this sequence come from?

- Sampling of a continuous-time signal
- Naturally discrete-time signal

Naturally digital information

• Text is commonly encoded using ASCII, and MATLAB automatically represents any string file as a list of ASCII numbers.

text string >> str='I love ECS332'; >> real(str) ans = (decimal) ASCII representation of the text string >> dec2base(str,2) ans = binary (base 2) representation of the decimal numbers

 $x_{\text{PAM}}(t) = \sum_{n=-\infty}^{\infty} m[n] p(t-nT)$

$$x_{\text{PAM}}(t) = \sum_{n=-\infty}^{\infty} m[n] p(t-nT)$$

86

$$x_{\text{PAM}}(t) = \sum_{n=-\infty}^{\infty} m[n] p(t-nT)$$

Important Properties of \mathcal{F}

 $\left\{x^* y\right\}(t) = \int x(\mu) y(t-\mu) d\mu = \int x(t-\mu) y(\mu) d\mu$ **Convolution Properties:** $x * y \xrightarrow{\mathcal{F}} X \times Y$ Note that the $x \times y \xrightarrow{\mathcal{F}} X * Y$ magnitude of this is simply |G(f)|Shifting Properties: $g(t-t_0) \xrightarrow{\mathcal{F}} e^{-j2\pi ft_0} G(f)$ $e^{j2\pi f_0 t}g(t) = G(f - f_0)$ Modulation: $g(t)\cos\left(2\pi f_c t\right) \xrightarrow{\mathcal{F}} \frac{1}{2}G\left(f - f_c\right) + \frac{1}{2}G\left(f + f_c\right)$

