Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th
6. Sampling, Reconstruction, and Pulse Modulation

Office Hours:
BKD, 4th floor of Sirindhralai building
Monday $\quad 9: 30-10: 30$
Monday
14:00-16:00
Thursday 16:00-17:00

Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong

 prapun@siit.tu.ac.th6.1 Sampling

Sampling

- Start with a continuous-time (analog) signal.

Sampling

- Record the value every T_{s} seconds.

Sampling

- Get a sequence of samples (numbers).

Example: $\sin (100 \pi t)$

This is the plot of $\sin (100 \pi t)$. What's wrong with it?

Example: $\sin (100 \pi t)$

Signal of the form $\sin \left(2 \pi f_{0} t\right)$ have frequency $f=f_{0} \mathrm{~Hz}$. So, the frequency of $\sin (100 \pi t)$ is 50 Hz .

From time 0 to 1 , it should have completed 50 cycles. However, our plot has only one cycle.

It looks more like the plot of $\quad \sin (2 \pi t)$

Example: $\sin (100 \pi t)$

Aliasing causes high-frequency signal to be seen as low frequency.

Example: $\sin (100 \pi \mathrm{t})$

Signal of the form $\sin \left(2 \pi f_{0} t\right)$ have frequency $f=f_{0} \mathrm{~Hz}$. So, the frequency of $\sin (100 \pi t)$ is 50 Hz .

We need to sample at least 100 times per time unit.

Here, the number of sample per time unit is 49 , which is too small to avoid aliasing.

Using plotspect.m to study aliasing

- f_{s} : Sampling frequency $=200$ samples $/ \mathrm{sec}$
$\cos (2 \pi(5) t)$

Using plotspect.m to study aliasing

- f_{s} : Sampling frequency $=200$ samples/sec

Using plotspect.m to study aliasing

- f_{s} : Sampling frequency $=200$ samples $/ \mathrm{sec}$

Using plotspect.m to study aliasing

- f_{s} : Sampling frequency $=200$ samples $/ \mathrm{sec}$

Using plotspect.m to study aliasing

- f_{s} : Sampling frequency $=200$ samples $/ \mathrm{sec}$

This behavior is commonly referred to as folding.

MATLAB Demo $f_{s}:$ Sampling frequency $=200$ samples $/ \mathrm{sec}$

The frequency \boldsymbol{f}_{0} of the cosine is increased (in steps of 10) from 10 Hz to 300 Hz .

MATLAB Demo

Pac Man's Tunneling

Actually, I think we should call
it tunneling (like in Pac Man).

MATLAB Demo

The frequency \boldsymbol{f}_{0} of the complex expo. signal is increased (in steps of 10) from 10 Hz to 300 Hz .
$e^{j 2 \pi\left(f_{0}\right) t}$
[aliasingExp.m] \qquad

MATLAB Demo

MATLAB Demo

MATLAB Demo

Conclusion

- The folding technique is useful for finding the perceived frequency of $\cos \left(2 \pi\left(f_{0}\right) t\right)$. Demo: [aliasingCos_folding]

Original signal: cosine at frequency $f_{0}=150$

When $f_{\mathrm{s}}=200[\mathrm{Sa} / \mathrm{s}]$, the cosine @ freq. 150 Hz will be perceived as a cosine @ freq. 50 Hz .

MATLAB Demo

Conclusion

- The folding technique is useful for finding the perceived frequency of $\cos \left(2 \pi\left(f_{0}\right) t\right)$. Demo: [aliasingCos_folding]

Conclusions

- The folding technique is useful for finding the perceived frequency of $\cos \left(2 \pi\left(f_{0}\right) t\right)$.
- OK to look at the frequency only from 0 to $f_{s} / 2$.
- When the signal does not have the "symmetry" between the positive and negative frequency parts,
- for example, the complex exponential $e^{j 2 \pi\left(f_{0}\right) t}$
- must look at the frequency from $-f_{s} / 2$ to $f_{s} / 2$.
- Actually, it is doing "tunneling".

Conclusions

- When the signal does not have the "symmetry" between the positive and negative frequency parts,
- for example, the complex exponential $e^{j 2 \pi\left(f_{0}\right) t}$
- must look at the frequency from $-f_{s} / 2$ to $f_{s} / 2$.

Ideal Sampling

The Fourier transform of the original signal

The Fourier transform of the (ideal) sampled signal

Ideal Sampling

$$
G_{\delta}(f)=\sum_{k=-\infty}^{\infty} f_{s} G\left(f-k f_{s}\right)
$$

The Fourier transform of the original signal

Ideal Sampling: MATLAB Exploration

Ideal Sampling: MATLAB Exploration

The Fourier transform of the original signal

The Fourier transform of the (ideal) sampled signal

When $B<f_{s} / 2$, the replicas do not overlap and hence we do not need to spend extra effort to find their sum.

Ideal Sampling: MATLAB Exploration

The Fourier transform of the original signal

The Fourier transform of the (ideal) sampled signal

When B < fs/2, the replicas do not overlap and hence we do not need to spend extra effort to find their sum.

Ideal Sampling: MATLAB Exploration

The Fourier transform of the original signal

The Fourier transform of the (ideal) sampled signal

Note that $G_{\delta}(f)$ is "periodic" in the frequency domain with period f_{s}. Therefore, it is sufficient to look only at f between $\pm \frac{f_{S}}{2}$.

Ideal Sampling: MATLAB Exploration

Ideal Sampling: plotspect’s view

- The function plotspect relies on the sampled version of the signal.
- Any corruption of information (aliasing) from the sampling process will also be "visible" in the output of plotspect.
- plotspect also looks only at f between $\pm \frac{f_{S}}{2}$.
- With some vertical scaling.

Ideal Sampling: plotspect’s view

When $B>f_{s} / 2$, plotspect's result will be quite different from the expected theoretical/anal ytical Fourier transform $G(f)$.

Ideal Sampling: plotspect’s view

The Fourier transform of the original signal

The Fourier transform of the (ideal) sampled signal

For plotspect to give an accurate view, we need B < fs/2.

Ideal Sampling: Folding

- When the signal $g(t)$ is real-valued, recall that its Fourier transform has conjugate symmetry.
- It is sufficient to look at the positive frequency if we care only about the magnitude.
- Therefore, we can limit our view to $\left[0, f_{s} / 2\right]$.

Ideal Sampling: from $-f_{s} / 2$ to $f_{s} / 2$

The Fourier transform of the original signal

The Fourier transform of the (ideal) sampled signal

Ideal Sampling: Folding

The Fourier transform of the original signal

The Fourier transform of the (ideal) sampled signal

Ideal Sampling: Folding

[Gdelta_demo3.m]

Ideal Sampling: Folding

Ideal Sampling: Folding

Ideal Sampling: Folding

When $G(f)$ resides only in the positive frequency, we start seeing the flaw of the "folding technique".

Ideal Sampling: Tunneling

Ideal Sampling: Folding

Ideal Sampling: Folding

Ideal Sampling: Tunneling

Ideal Sampling: Folding (a revisit)

Ideal Sampling: Folding (a revisit)

Ideal Sampling: Folding (a revisit)

Ideal Sampling: Folding (a revisit)

[Gdelta_demo10.m]

Ideal Sampling

Complex exponential

Let's increase f_{0}

Complex exponential

Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

6.2 Reconstruction

Reconstruction of $\cos (2 \pi(2) t)$

$T_{S}=0.4$

Upper plot in
Figure 34.

Reconstruction of $\cos (2 \pi(2) t)$

$$
\begin{aligned}
T_{s} & =0.4 \\
f_{s} & =1 / 0.4 \\
& =2.5[\mathrm{Sa} / \mathrm{s}]
\end{aligned}
$$

Upper plot in Figure 34.

Reconstruction of $\cos (2 \pi(2) t)$

Reconstruction of $\cos (2 \pi(2) t)$

$T_{s}=0.2$
$f_{S}=\frac{1}{0.2}=5[\mathrm{Sa} / \mathrm{s}]$

Lower plot in Figure 34.

Reconstruction of $\cos (2 \pi(2) t)$

$T_{s}=0.2$
$f_{s}=\frac{1}{0.2}=5[\mathrm{Sa} / \mathrm{s}]$

Lower plot in Figure 34.

Reconstruction of $\cos (2 \pi(2) t)$

$T_{s}=0.2$
$f_{s}=\frac{1}{0.2}=5[\mathrm{Sa} / \mathrm{s}]$

Some reconstruction error is visible at the boundaries because we did not use $g[n]$ for n beyond ± 2 in the reconstruction here.

Triangular (linear) interpolation

Triangular (linear) interpolation

sinc vs. triangular interpolation

sinc vs. triangular interpolation

sinc vs. triangular interpolation

Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th

6.3 Analog Pulse Modulation

PAM: Pulse Amplitude Modulation

Start with a sequence of symbols (numbers).

Where does this sequence come from?

- Sampling of a continuous-time signal
- Naturally discrete-time signal

Naturally digital information

- Text is commonly encoded using ASCII, and MATLAB automatically represents any string file as a list of ASCII numbers.

```
>> str='I love ECS332'; text string
ans = (decimal) ASCII representation of the text string
    73 130 108
>> dec2base(str,2)
ans =
1001001
0100000
binary (base 2) representation of the decimal numbers
```

1101100
1101111
1110110
1100101
0100000
1000101
1000011
1010011
0110011
0110011
0110010

PAM: Pulse Amplitude Modulation

PAM: Pulse Amplitude Modulation

The height (amplitude) of each pulse is scaled by the corresponding $m[n]$

PAM: Pulse Amplitude Modulation

$$
x_{\mathrm{PAM}}(t)=\sum_{n=-\infty}^{\infty} m[n] p(t-n T)
$$

$X_{\text {РАМ }}(f)(1 / 4)$

$$
{ }_{1} \uparrow p(t)=1\left[t \in\left[0, T_{s}\right)\right]
$$

$$
\mathbf{m}=[-1,-1,1,-1,-1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1]
$$

$$
x_{\mathrm{PAM}}(t)=\sum_{n} m[n] p\left(t-n T_{s}\right)
$$

Can you sketch the spectrum of $s(t)$?

$X_{\text {РАМ }}(f)(2 / 4)$

$$
{ }_{1} \uparrow p(t)=1\left[t \in\left[0, T_{s}\right)\right]
$$

$$
\mathbf{m}=[-1,-1,1,-1,-1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1]
$$

$$
x_{\mathrm{PAM}}(t)=\sum_{n} m[n] p\left(t-n T_{s}\right)
$$

Does this mean $\left|X_{\text {PAM }}(f)\right|$ will simply be a sum of $|P(f)|$ and therefore its shape will be similar to $|P(f)|$?

Important Properties of \mathcal{F}

$\left\{x^{*} y\right\}(t)=\int_{x}^{\prime \prime}(\mu) y(t-\mu) d \mu=\tilde{j}_{x(t-\mu) y(\mu) d \mu}$
Convolution Properties:

$$
\begin{aligned}
& x^{*} y \underset{\sim}{\rightleftharpoons} \\
& x \times y \stackrel{\mathcal{F}}{\rightleftharpoons} X \times Y \\
& \rightleftharpoons
\end{aligned}{ }^{*} Y
$$

Note that the
magnitude of this is simply $|G(f)|$

Shifting Properties:

$$
\begin{gathered}
g\left(t-t_{0}\right) \stackrel{\mathcal{F}}{\rightleftharpoons} e^{-j 2 \pi t_{0}} G(f) \\
e^{j 2 \pi f_{0} t} g(t) \stackrel{\mathcal{F}}{\rightleftharpoons} G\left(f-f_{0}\right)
\end{gathered}
$$

Modulation:

$$
g(t) \cos \left(2 \pi f_{c} t\right) \stackrel{\mathcal{F}}{\rightleftharpoons} \frac{1}{2} G\left(f-f_{c}\right)+\frac{1}{2} G\left(f+f_{c}\right)
$$

$X_{\text {PAM }}(f)(3 / 4)$

$\mathbf{m}=[-1,-1,1,-1,-1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1]$

$$
\begin{aligned}
& x_{\mathrm{PAM}}(t)=\sum_{n} m[n] p\left(t-n T_{s}\right) \\
& \xrightarrow{\mathcal{F}} X_{\mathrm{PAM}}(f)=\sum_{n} m[n] P(f) e^{-j 2 \pi f n T_{s}} \\
&=P(f) \sum_{n} m[n] e^{-j 2 \pi \pi n T_{s}}
\end{aligned}
$$

$X_{\text {РАМ }}(f)(4 / 4)$

93

$$
X_{\mathrm{PAM}}(t)=\sum_{n} m[n] p\left(t-n T_{s}\right) \xrightarrow{\mathcal{F}} X_{\mathrm{PAM}}(f)=P(f) \sum_{n} m[n] e^{-j 2 \pi f n T_{s}}
$$

A revisit to an earlier OOK Example

$$
\begin{aligned}
& x_{\mathrm{PAM}}(t)=\sum_{n} m[n] p\left(t-n T_{s}\right)
\end{aligned}
$$

Spectrum of ON-OFF Keying

